Boundary triplets approach to the extension theory and abstract Weyl function

Mark Malamud

Institute of Appl. Math. and Mech.

1.1 Boundary Triplets and Parameterization of Proper Extensions

Let A be a densely defined closed symmetric operator in a separable Hilbert space \mathfrak{H} with equal deficiency indices $\mathfrak{n}_{\pm}(A) = \dim \mathfrak{N}_{\pm i} \leq \infty$, where $\mathfrak{N}_z := \ker(A^* - z)$ is the defect subspace. Let \mathfrak{H}_+ is dom A^* equipped with the norm of the graph defined by equality $\|f\|_+^2 = \|f\|^2 + \|A^*f\|^2$.

Defintion 1

A triplet $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ is called a boundary triplet for the adjoint operator A^* of A if \mathcal{H} is an auxiliary Hilbert space and $\Gamma_0, \Gamma_1 : dom(A^*) \to \mathcal{H}$ are linear mappings such that (i) the following abstract second Green identity holds

$$(A^*f,g)-(f,A^*g)=(\Gamma_1f,\Gamma_0g)_{\mathcal{H}}-(\Gamma_0f,\Gamma_1g)_{\mathcal{H}},\quad f,g\in\mathrm{dom}(A^*);$$
(1)

(ii) the mapping $\Gamma := (\Gamma_0, \Gamma_1)^\top : dom(A^*) \to \mathcal{H} \oplus \mathcal{H}$ is surjective.

Lemma 1

Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a bound. tripl. of the op. A^* . Then

- (i) $\Gamma_j \in \mathcal{B}(\mathfrak{H}_+, \mathcal{H}), j \in \{0, 1\} \text{ and } \ker \Gamma = \dim A =: \mathfrak{H}_+^0$.
- (ii) Map. $\widetilde{\Gamma}: \mathfrak{H}_+/\mathfrak{H}_+^0 \to \mathcal{H} \oplus \mathcal{H}$ defines a topolog. isomorph.

Definition 2

- (i) A closed extension A of A is called a proper extension, if $A \subseteq \widetilde{A} \subseteq A^*$. The set of all proper extensions of A completed by the (non-proper) extensions A and A^* is denoted by Ext_A .
- (ii) Two proper extensions A', A'', of A are called disjoint if $dom(A') \cap dom(A'') = dom(A)$ and transversal if in addition $dom(A') + dom(A'') = dom(A^*)$.

The set $\widetilde{\mathcal{C}}(\mathcal{H})$ of closed linear relations in \mathcal{H} is the set of closed linear subspaces of $\mathcal{H} \oplus \mathcal{H}$. Recall that $\operatorname{dom}(\Theta) = \{f : \{f,f'\} \in \Theta\}$, ran $(\Theta) = \{f' : \{f,f'\} \in \Theta\}$, and $\operatorname{mul}(\Theta) = \{f' : \{0,f'\} \in \Theta\}$ are the domain, the range, and the multivalued part of Θ . A closed linear operator A in \mathcal{H} is identified with its graph $\operatorname{gr}(A)$, so that the set $\mathcal{C}(\mathcal{H})$ of closed linear operators in \mathcal{H} is viewed as a subset of $\widetilde{\mathcal{C}}(\mathcal{H})$. In particular, a linear relation Θ is an operator if and only if $\operatorname{mul}(\Theta)$ is trivial. Note that the adjoint relation $\Theta^* \in \widetilde{\mathcal{C}}(\mathcal{H})$ of $\Theta \in \widetilde{\mathcal{C}}(\mathcal{H})$ is defined by

$$\Theta^* = \left\{ \begin{pmatrix} h \\ h' \end{pmatrix} : (f',h)_{\mathcal{H}} = (f,h')_{\mathcal{H}} \text{ for all } \begin{pmatrix} f \\ f' \end{pmatrix} \in \Theta \right\}.$$

A linear relation Θ is said to be symmetric if $\Theta \subset \Theta^*$ and self-adjoint if $\Theta = \Theta^*$.

For a symmetric linear relation $\Theta \subseteq \Theta^*$ in \mathcal{H} the multivalued part $\text{mul}(\Theta)$ is the orthogonal complement of $\text{dom}(\Theta)$ in \mathcal{H} .

Proposition 1

The map $\Gamma: \mathfrak{H}_+ \to \mathcal{H} \oplus \mathcal{H}$ defines a bijective corres-ce between the set of $\mathsf{Ext}_{\mathcal{A}}$ and the set $\widetilde{\mathcal{C}}(\mathcal{H})$ of closed linear relat-s in \mathcal{H} .

$$\mathsf{Ext}_{A}\ni\widetilde{A}\mapsto\Theta:=\Gamma(\mathsf{dom}\,\widetilde{A})=\{\begin{pmatrix}\Gamma_{0}\mathit{f}&\Gamma_{1}\mathit{f}\end{pmatrix}^{T}:\mathit{f}\in\mathsf{dom}\,\widetilde{A}\}\in\widetilde{\mathcal{C}}(\mathcal{H}),$$

(we will write $A_{\Theta} := \widetilde{A}$). Moreover, the following holds:

- $(i) (A_{\Theta})^* = A_{\Theta^*};$
- (ii) $A_{\Theta_1} \subseteq A_{\Theta_2} \Leftrightarrow \Theta_1 \subseteq \Theta_2$;
- (iii) A_{Θ} is symmetric $(A_{\Theta} \subseteq (A_{\Theta})^*) \Leftrightarrow \Theta$ is symmetric and
- $n_{\pm}(A_{\Theta}) = n_{\pm}(\Theta)$. In particular, $A_{\Theta} = (A_{\Theta})^* \Leftrightarrow \Theta = \Theta^*$;
- (iv) A_{Θ_1} and A_{Θ_2} are disjoint $\Leftrightarrow \Theta_1 \cap \Theta_2 = \{0\};$
- $(\textit{\textbf{v}}) \; \textit{\textbf{A}}_{\Theta_1} \; \mathrm{and} \; \textit{\textbf{A}}_{\Theta_2} \; \mathrm{are \; transversal} \Leftrightarrow \Theta_1 \dot{+} \Theta_2 = \mathcal{H} \oplus \mathcal{H};$
- (vi) A_{Θ} and A_0 disjoint (transversal) $\Leftrightarrow \Theta = \operatorname{gr} B$, $B \in \mathcal{C}(\mathcal{H})$
- $(B \in \mathcal{B}(\mathcal{H}))$. In this case

$$\operatorname{dom} \widetilde{A} = \ker(\Gamma_1 - B\Gamma_0), \quad B \in \mathcal{C}(\mathcal{H}),$$

and B is called a boundary operator for the extension $\widetilde{A} = A$

1.2 Weyl function and γ -field

Definition 3

Let A be a symmetric oper-r in \mathfrak{H} , $\tilde{A} = \tilde{A}^* \in \operatorname{Ext}_A$ and \mathcal{H} a Hilbert space, $\dim \mathcal{H} = n_{\pm}(A)$. The op-r valued function $\gamma : \rho(\tilde{A}) \to \mathcal{B}(\mathcal{H}, \mathfrak{H})$ is called the γ -field of A, corresponding to ext-n \tilde{A} , if:

- (i) $\gamma(\lambda)$ isomorphically maps \mathcal{H} to \mathfrak{N}_{λ} for all $\lambda \in \rho(\widetilde{A})$;
- (ii) the identity is valid:

$$\gamma(\lambda) = U_{\zeta,\lambda}\gamma(\zeta) := [I + (\lambda - \zeta)(\widetilde{A} - \lambda)^{-1}]\gamma(\zeta), \quad \lambda, \zeta \in \rho(\widetilde{A}).$$
 (2)

Lemma 2

Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for the operator A^* , $A_0 := A^* \upharpoonright \ker \Gamma_0$. Then:

(i) For each $\lambda \in \rho(A_0)$ a direct sum decomposition

$$\operatorname{dom} A^* = \operatorname{dom} A_0 + \mathfrak{N}_{\lambda}, \qquad \lambda \in \rho(A_0)$$
 (3)

1.2 Weyl function and γ -field

Definition 3

Let A be a symmetric oper-r in \mathfrak{H} , $\tilde{A} = \tilde{A}^* \in \operatorname{Ext}_A$ and \mathcal{H} a Hilbert space, $\dim \mathcal{H} = n_{\pm}(A)$. The op-r valued function $\gamma : \rho(\tilde{A}) \to \mathcal{B}(\mathcal{H}, \mathfrak{H})$ is called the γ -field of A, corresponding to ext-n \tilde{A} , if:

- (i) $\gamma(\lambda)$ isomorphically maps \mathcal{H} to \mathfrak{N}_{λ} for all $\lambda \in \rho(\widetilde{A})$;
- (ii) the identity is valid:

$$\gamma(\lambda) = U_{\zeta,\lambda}\gamma(\zeta) := [I + (\lambda - \zeta)(\widetilde{A} - \lambda)^{-1}]\gamma(\zeta), \quad \lambda, \zeta \in \rho(\widetilde{A}).$$
 (2)

Lemma 2

Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for the operator A^* , $A_0 := A^* \upharpoonright \ker \Gamma_0$. Then:

(i) For each $\lambda \in \rho(A_0)$ a direct sum decomposition

$$\operatorname{dom} \mathbf{A}^* = \operatorname{dom} \mathbf{A}_0 \dotplus \mathfrak{N}_{\lambda}, \qquad \lambda \in \rho(\mathbf{A}_0)$$
 (3)

(ii) The operator valued function

$$\gamma(\lambda) := (\Gamma_0 \upharpoonright \mathfrak{N}_{\lambda})^{-1}, \qquad \lambda \in \rho(A_0)$$
 (4)

is well defined and holom-c in $\rho(A_0)$ with values in $\mathcal{B}(\mathcal{H}, \mathfrak{N}_{\lambda})$. (iii) $\gamma(\lambda)$ is the γ -field of the op. A, corr-ing to extension A_0 . (iv) The following identity holds

$$\gamma(\overline{\lambda})^* = \Gamma_1(A_0 - \lambda)^{-1}, \quad \lambda \in \rho(A_0).$$
 (5)

Definition 4

Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* . The operator valued function $M(\cdot)$ defined by

$$M(\lambda)\Gamma_0 f_{\lambda} = \Gamma_1 f_{\lambda}, \qquad f_{\lambda} \in \mathfrak{N}_{\lambda}, \qquad \lambda \in \rho(A_0),$$
 (6)

is called the Weyl function of the operator A, corresponding to the boundary triplet Π .

(ii) The operator valued function

$$\gamma(\lambda) := (\Gamma_0 \upharpoonright \mathfrak{N}_{\lambda})^{-1}, \qquad \lambda \in \rho(A_0)$$
 (4)

is well defined and holom-c in $\rho(A_0)$ with values in $\mathcal{B}(\mathcal{H}, \mathfrak{N}_{\lambda})$.

- (iii) $\gamma(\lambda)$ is the γ -field of the op. A, corr-ing to extension A_0 .
- (iv) The following identity holds

$$\gamma(\overline{\lambda})^* = \Gamma_1(A_0 - \lambda)^{-1}, \quad \lambda \in \rho(A_0).$$
 (5)

Definition 4

Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* . The operator valued function $M(\cdot)$ defined by

$$M(\lambda)\Gamma_0 f_{\lambda} = \Gamma_1 f_{\lambda}, \qquad f_{\lambda} \in \mathfrak{N}_{\lambda}, \qquad \lambda \in \rho(A_0),$$
 (6)

is called the Weyl function of the operator \boldsymbol{A} , corresponding to the boundary triplet Π .

Theorem 1

Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for the operator A^* , $M(\cdot)$ the corresponding Weyl function. Then:

- (i) $M(\cdot)$ is well defined and holomorphic in $\rho(A_0)$ as an operator valued function in $\mathcal{B}(\mathcal{H})$;
- (ii) for all $\lambda, \zeta \in \rho(A_0)$ the following identity is valid

$$M(\lambda) - M(\zeta)^* = (\lambda - \overline{\zeta})\gamma(\zeta)^*\gamma(\lambda), \quad \lambda, \zeta \in \rho(A_0);$$
 (7)

(iii) $M(\cdot)$ is $R[\mathcal{H}]$ -function and satisfies the condition

$$0 \in \rho(\operatorname{Im} M(\lambda)), \qquad \lambda \in \mathbb{C}_+ \cup \mathbb{C}_-.$$
 (8)

Proposition 2

Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for the operator A^* , $M(\cdot)$ the corresponding Weyl function. Then: (i) The Weyl function $M(\cdot)$ admits an integral representation

$$M(\lambda) = C_0 + \int \left(\frac{1}{t - \lambda} - \frac{t}{1 + t^2}\right) d\Sigma(t). \tag{9}$$

where $C_0 = C_0^* \in \mathcal{B}(\mathcal{H})$ and $\Sigma(\cdot) = \Sigma^*(\cdot)$ is a non-decreasing operator valued function with values in $\mathcal{B}(\mathcal{H})$ satisfying

$$\int\limits_{\mathbb{R}} (1+t^2)^{-1} d\Sigma(t) \in \mathcal{B}(\mathcal{H}) \quad \text{and} \quad \int\limits_{\mathbb{R}} d(\Sigma(t)h,h) = +\infty, \quad h \in \mathcal{H} \setminus \{0\}.$$

(ii) If $M(\cdot)$ admits a holomorphic continuation through the interval (α, β) , then $M(\lambda)$ is strictly increasing in (α, β) , i.e.

$$M(\lambda_1) \leq M(\lambda_2)$$
 and $0 \in \rho(M(\lambda_2) - M(\lambda_1))$ for $\alpha < \lambda_1 < \lambda_2 < \beta$.

The spectrum of the proper extension A_{Θ} of the operator A can be described in terms of the Weyl function and the boundary relation Θ .

Theorem 2

Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* , $M(\cdot)$ the corresponding Weyl function, $\Theta \in \widetilde{\mathcal{C}}(\mathcal{H})$ and $\lambda \in \rho(A_0)$. Then the following equivalences are true:

$$\lambda \in \rho(A_{\Theta}) \iff 0 \in \rho(\Theta - M(\lambda));$$
 (11)

$$\lambda \in \sigma_i(A_{\Theta}) \iff 0 \in \sigma_i(\Theta - M(\lambda)), \qquad i \in \{p, c, r\};$$
 (12)

At the same time we have the equalities

$$\ker(A_{\Theta} - \lambda) = \gamma(\lambda) \ker(\Theta - M(\lambda)). \tag{13}$$

Proposition 3

Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ and $\widetilde{\Pi} = \{\mathcal{H}, \widetilde{\Gamma}_0, \widetilde{\Gamma}_1\}$ be the boundary triplets for A^* , which are related by J-unitary operator $X = (X_{jk})_{j,k=1}^2 \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$. Then the Weyl functions M(z) and $\widetilde{M}(z)$, corresponding to the boundary triplets Π and $\widetilde{\Pi}$ are related as

$$\widetilde{M}(z) = (X_{11}M(z) + X_{12})(X_{21}M(z) + X_{22})^{-1},$$
 (14)

In particular, if $\ker \Gamma_0 = \ker \Gamma_0 = \operatorname{dom}(A_0)$ and boundary triplets Π and $\widetilde{\Pi}$ are related by

$$\widetilde{\Gamma}_0 = Z^{-1}\Gamma_0, \qquad \widetilde{\Gamma}_1 = Z^*(\Gamma_1 + K\Gamma_0),$$
(15)

then the Weyl functions $M(\cdot)$ and $\widetilde{M}(\cdot)$ are related by

$$\widetilde{M}(z) = Z^* M(z) Z + K \tag{16}$$

where $K = K^* \in \mathcal{B}(\mathcal{H})$, $Z \in \mathcal{B}(\mathcal{H})$ is boundedly invertible.

Theorem 3

Suppose that $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ and $\widetilde{\Pi} = \{\widetilde{\mathcal{H}}, \widetilde{\Gamma}_0, \widetilde{\Gamma}_1\}$ are two boundary triplets for A^* , V — isometry from $\widetilde{\mathcal{H}}$ to \mathcal{H} and $\widetilde{V} = V \oplus V$. Then there exists bounded $J_{\mathcal{H}}$ -unitary operator $X = (X_{i,j})_{i,j=1}^2$ in $\mathcal{H} \oplus \mathcal{H}$, such that

$$\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \begin{pmatrix} \Gamma_1 \\ \Gamma_0 \end{pmatrix} = \begin{pmatrix} V\widetilde{\Gamma}_1 \\ V\widetilde{\Gamma}_0 \end{pmatrix}. \tag{17}$$

1.3 Example 1. First-order differentiation operator on a finite interval

Let $P = P_{min}$ and P_{max} be the minimal and maximal operators, generated in $L^2(0,1)$ by the dif-al expression $D := -i\frac{d}{dx}$. Then:

$$\operatorname{dom} P = H_0^1[0,1] = \{ f \in H^1[0,1] : f(0) = f(1) = 0 \}.$$

Moreover, $P_{\text{max}} = P^*$ and dom $P^* = H^1[0, 1]$. From the equation $(P^* - z)f = 0$, we find the defect subspace of the operator P:

$$\mathfrak{N}_{z} = \ker(P^* - z) = \operatorname{span} \{e^{izx}\}, \quad z \in \mathbb{C},$$

hence, the deficiency indices of P are $n_{\pm}(P) = 1$.

The boundary triplet $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ of the operator P^* can be chosen as

$$\sqrt{2}\Gamma_0 f = f(0) + f(1), \quad \sqrt{2}\Gamma_1 f = i(f(0) - f(1)), \quad \mathcal{H} = \mathbb{C}.$$
 (18)

Let $f_z = e^{izx}$, we find

$$\Gamma_0 f_z = \sqrt{2} e^{iz/2} \cos(z/2), \quad \Gamma_1 f_z = \sqrt{2} e^{iz/2} \sin(z/2),$$

hence, the corresponding Weyl function $M(\cdot)$ is

$$M(z) = \Gamma_1(\Gamma_0 \upharpoonright \mathfrak{N}_z)^{-1} = \operatorname{tg}(z/2), \qquad z \in \mathbb{C}_+ \cup \mathbb{C}_-.$$

Clearly, $M(\cdot)$ is a meromorphic function. Let $P_j = P^* \upharpoonright \ker \Gamma_j$, $j \in \{0,1\}$, we see that the singularities $M(\cdot)$ coincide with the spectrum of the operator P_0 , $\sigma(P_0) = \{\pi + 2\pi k\}_{k \in \mathbb{Z}}$, and zeros coincide with the spectrum of the operator P_1 , $\sigma(P_1) = \{2\pi k\}_{k \in \mathbb{Z}}$.

Example 2. Differentiation operator on the line.

Let P be the direct sum of minimal operators associated with the differential expression $D := -i\frac{d}{dx}$ on the half-lines,

$$\operatorname{dom} P = \{ f \in H^1(\mathbb{R}) : f(0) = 0 \} = H_0^1(\mathbb{R}_-) \oplus H_0^1(\mathbb{R}_+).$$

It is easily seen that the operator P can be represented as

$$P = P_{-} \oplus P_{+}, \tag{19}$$

where $P_{\pm} := P_{\pm, \text{min}} : f \mapsto -i \frac{df}{dx}$ are the minimal operators in $L^2(\mathbb{R}_{\pm})$. Moreover, $P_{\text{max}} = P^*$. It's clear that $P^* = P_-^* \oplus P_+^*$ and dom $P^* = H^1(\mathbb{R}_-) \oplus H^1(\mathbb{R}_+)$. We find the defect subspace of P

$$\mathfrak{N}_{\pm z} = \ker(P^* - z) = \operatorname{span}\{e^{izx}\chi_{\mathbb{R}_{\pm}}(x)\}, \qquad z \in \mathbb{C}_{\pm}.$$

It is easy to see that $(n_-(P_-), n_+(P_-)) = (1, 0)$ and $(n_-(P_+), n_+(P_+)) = (0, 1)$. Therefore, by (19) $n_{\pm}(P) = 1$.

The boundary triplet $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ of the operator P^* can be chosen in the form

$$\sqrt{2}\Gamma_0 f := f(+0) + f(-0), \quad \sqrt{2}\Gamma_1 f := i(f(+0) - f(-0)).$$
 (20)

Let $f_z = e^{izx} \chi_{\mathbb{R}_{\pm}}(x)$, $z \in \mathbb{C}_{\pm}$, then the corresponding Weyl function $M(\cdot)$ has the form

$$M(z) = \Gamma_1(\Gamma_0 \upharpoonright \mathfrak{N}_z)^{-1} = \begin{cases} i, & z \in \mathbb{C}_+, \\ -i, & z \in \mathbb{C}_-. \end{cases}$$
 (21)

Hence the spectral function $\sigma_M(t)$ is determined by applying the Stieltjes inversion formula:

$$\sigma_M(t) = \frac{1}{\pi} \int_0^t \operatorname{Im} M(x+i0) dx = \frac{1}{\pi} \int_0^t \operatorname{Im} i dx = \frac{1}{\pi} \int_0^t dx = \frac{t}{\pi}.$$

Example 3. Sturm–Liouville operator on a finite interval.

Let $A:=A_{min}$ and A_{max} be the minimal and maximal operators, respectively, generated in $L^2(0,1)$ by the dif. expression $\mathcal{A}=-\frac{d^2}{dx^2}+q$ with a real potential $q=\bar{q}\in L^2(0,1)$. In this case

$$A_{\text{max}} = A^* \quad \text{and} \quad \text{dom } A^* = H^2[0, 1],$$
 (22)

and

$$\operatorname{dom} A = H_0^2[0,1] = \{ f \in H^2[0,1] : f(0) = f(1) = f'(0) = f'(1) = 0 \}.$$
(23)

Since $q = \overline{q}$, the operator A is symmetric. Let $c(\cdot, z)$, $s(\cdot, z)$ be the solutions of eq-on Af = zf satisfying the initial cond-s

$$s(0,z) = c'(0,z) = 0,$$
 $s'(0,z) = c(0,z) = 1.$ (24)

Then the defect subspace \mathfrak{N}_z is $\mathfrak{N}_z = \text{span}\{c(\cdot,z),s(\cdot,z)\}$. Hence, $n_{\pm}(A) = 2$.

The set $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ with

$$\mathcal{H} = \mathbb{C}^2, \quad \Gamma_0 f = \begin{pmatrix} f(0) \\ f(1) \end{pmatrix}, \quad \Gamma_1 f = \begin{pmatrix} f'(0) \\ -f'(1) \end{pmatrix}.$$
 (25)

forms a boundary triplet for the operator A^* .

The corresponding Weyl function $M(\cdot)$ and γ -field are given by

$$M(z) = -\frac{1}{s(1,z)} \begin{pmatrix} c(1,z) & -1 \\ -1 & s'(1,z) \end{pmatrix}. \tag{26}$$

$$\gamma(z) = \frac{1}{s(1,z)} \begin{pmatrix} c(\cdot,z) & s(\cdot,z) \end{pmatrix} \begin{pmatrix} c(1,z) & -1 \\ -1 & s'(1,z) \end{pmatrix}. \quad (27)$$

Example 4. Sturm–Liouville operator on the semiaxis

Let $A:=A_{min}$ and A_{max} be the minimal and maximal operators generated in $L^2(\mathbb{R}_+)$ by the differential expression $\mathcal{A}=-\frac{d^2}{dx^2}+q$ with a potential $q=\bar{q}\in L^2_{loc}(\mathbb{R}_+)$. Using the embedding theorem, one proves the inclusions

$$\operatorname{dom} A \subset \{f \in H^2_{loc}(\mathbb{R}_+) : f(0) = f'(0) = 0\} \text{ and } \operatorname{dom} A_{max} \subset H^2_{loc}(\mathbb{R}_+)$$

and equality $A_{max} = A^*$. If $q = \bar{q} \in L^{\infty}(\mathbb{R}_+)$, then
 $\operatorname{dom} A = H^2_0(\mathbb{R}_+)$ and $\operatorname{dom} A_{max} = H^2(\mathbb{R}_+)$.

Now let the potential $q \in L^2_{loc}(\mathbb{R}_+)$ be semibounded from below. In that case $n_{\pm}(A) = 1$ (the limit point case at infinity). Hence $\lim_{b\to\infty} f(b) = \lim_{b\to\infty} f'(b) = 0$ for any $f \in \text{dom } A_{max}$ and the Green's formula for the operator A^* takes the form

$$\int_{a}^{\infty} (\mathcal{A}f)(x)\overline{g(x)}dx - \int_{0}^{\infty} f(x)\overline{(\mathcal{A}g)(x)}dx = -[f,g]_{0},$$

where
$$[f,g]_X := f(x)\overline{g'(x)} - f'(x)\overline{g(x)}$$
.

Therefore, the boundary triplet $\Pi^{\infty}=\{\mathcal{H},\Gamma_0^{\infty},\Gamma_1^{\infty}\}$ for the operator A^* can be chosen in the form

$$\mathcal{H} = \mathbb{C}, \quad \Gamma_0^{\infty} f = f(0), \quad \Gamma_1^{\infty} f = f'(0).$$
 (28)

Let $u_1, u_2 \in \text{dom } A^*$ be smooth functions with compact support in $[0, b], b < \infty$, and satisfying the conditions

$$u_1(0) = 1, \quad u_2(0) = 0, \qquad u_1'(0) = 0, \quad u_2'(0) = 1.$$
 (29)

Then $[f,u_1]_{\infty}=[f,u_2]_{\infty}=0$ and

$$f(0) = [f, u_2]_0, \quad f'(0) = -[f, u_1]_0.$$

Therefore, the mapping $\Gamma^{\infty} = \{\Gamma_0^{\infty}, \Gamma_1^{\infty}\} : \text{dom } A^* \to \mathbb{C} \times \mathbb{C}$ is surjective.

Let c(x,z), s(x,z) be the solutions of the equation A[f] = zf, satisfying

$$c(0,z) = 1,$$
 $c'(0,z) = 0,$
 $s(0,z) = 0,$ $s'(0,z) = 1.$

Since $n_{\pm}(A) = 1$, for each $z \in \mathbb{C} \setminus \mathbb{R}$ there exists the unique (Weyl) coefficient m(z), such that

$$f_z(x) := c(x,z) + m(z)s(x,z) \in L^2(\mathbb{R}_+).$$

The function $f_z(\cdot)$ is called the Weyl solution of equation $\ell[f] - zf = 0$. Clearly, $\Gamma_0^{\infty} f_z = 1$, $\Gamma_1^{\infty} f_z = m(z)$, and the Weyl function $M_{\infty}(\cdot)$ corresponding to the boundary triplet (28) is

$$M_{\infty}(z) = (\Gamma_1^{\infty} f_z)(\Gamma_0^{\infty} f_z)^{-1} = m(z).$$

Thus, it coincides with the classical Weyl coefficient $m(\cdot)$.

Example 5. Ordinary dif. op-s of order **2***n* on a finite interval

Let $A := A_{min}$ be the min. op-r generated in $L^2(0,1)$ by dif. exp-n

$$(\mathcal{A}[f])(x) = \sum_{k=1}^{n} (-1)^{k} (p_{n-k}(x)f^{(k)}(x))^{(k)} + p_{n}(x)f(x),$$

where $p_0^{-1}, p_1, \dots, p_n$ is a real, measurable and summable functions on (0,1). Then the operator A has deficiency indices (2n,2n). Let the quasi-derivatives $f^{[k]}$ be defined by the equalities

$$f^{[k]}(x) = f^{(k)}(x), \quad k \in \{0, \dots, n-1\}, \qquad f^{[n]}(x) = p_0(x)f^{(n)}(x),$$

$$f^{[n+k]}(x) = p_k(x)f^{(n-k)}(x) - \frac{d}{dx}f^{[n+k-1]}(x), \quad k \in \{1, \dots, n\}.$$

The domain of the operator $A_{max} =: A^*$ is

dom
$$A^* = \{ f \in L^2(0,1) : A[f] \in L^2(0,1) \},$$

and the domain of the minimal operator \boldsymbol{A} is given as follows

 $\operatorname{dom} A = \{f \in \operatorname{dom} A^*: \ f^{[k]}(0) = f^{[k]}(1) = 0, \ k \in \{0, 1, \dots, 2n-1\}\}.$

For any pair of func. $f, g \in \text{dom } A^*$ the Lagrange identity holds:

$$\mathcal{A}[f]\overline{g}(x) - f\mathcal{A}[\overline{g}](x) = \frac{d}{dx}[f,g]_x, \tag{30}$$

where

$$[f,g]_{x} = \sum_{k=1}^{n} \left(f^{[k-1]}(x) \overline{g}^{[2n-k]}(x) - f^{[2n-k]}(x) \overline{g}^{[k-1]}(x) \right). \quad (31)$$

The totality $\Pi = \{\mathbb{C}^{2n}, \Gamma_0, \Gamma_1\}$ where

$$\Gamma_0 f = \begin{pmatrix} \widehat{f}_0(0) \\ \widehat{f}_0(1) \end{pmatrix}, \quad \Gamma_1 f = \begin{pmatrix} \widehat{f}_1(0) \\ -\widehat{f}_1(1) \end{pmatrix},
\widehat{f}_0 := \begin{pmatrix} f, \dots, f^{(n-1)} \end{pmatrix}^\top, \quad \widehat{f}_1 := \begin{pmatrix} f^{[2n-1]}, \dots, f^{[n]} \end{pmatrix}^\top,$$
(32)

forms a boundary triplet for A^* .

The corresponding Weyl function M(z) is

$$M(z) = Y_1(z)(Y_0(z))^{-1}, \quad Y_j(z) = \Gamma_j(V(t,z)), \quad j \in \{0,1\},$$

where $V(t,z)=(v_1(t,z),...,v_{2n}(t,z))^{\top}$ is a fundamental system of matrix solutions of equation $\mathcal{A}[f]=zf$ satisfying the initial conditions $v_j^{[k-1]}=\delta_{jk}I_n,\,j,\in\{1,...,2n\}$.

Krein formula for the resolvents

Theorem 4

Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* , $M(\cdot)$ the corresponding Weyl function, $\Theta \in \widetilde{\mathcal{C}}(\mathcal{H})$, and A_{Θ} the corresponding proper extension of the operator A. Then:

(i) The formula

$$\operatorname{dom}(A_{\Theta}) = \{ f \in \operatorname{dom} A^* : \Gamma f \in \Theta \}, \quad \Theta := \Gamma(\operatorname{dom} A_{\Theta}) \quad (34)$$

establish a bijective correspondence between the set of all proper extensions A_{Θ} of the operator A and the set of closed linear relations $\Theta \in \widetilde{\mathcal{C}}(\mathcal{H}) \setminus \{0\}$;

(ii) for each $\Theta \in \mathcal{C}(\mathcal{H})$, such that $\rho(A_{\Theta}) \neq \emptyset$, the following Krein type formula holds

$$(A_{\Theta}-z)^{-1} = (A_0-z)^{-1} + \gamma(z)(\Theta - M(z))^{-1}\gamma(\overline{z})^*, \quad z \in \rho(A_0) \cap \rho(A_{\Theta});$$
(35)

(iii) equality (35) establish a second bijective correspondence between the set of proper extensions A_{Θ} of the operator A, for which $\rho(A_{\Theta}) \neq \emptyset$, and the set of closed linear relations Θ in

 $\mathcal{C}(\mathcal{H})$ with $\{z: 0 \in \rho(\Theta - M(z))\} \neq \emptyset$.

Corollary 1

If the linear relation Θ is a graph of the operator $B \in \mathcal{C}(\mathcal{H})$, then formula (35) has the form

$$(A_B - z)^{-1} = (A_0 - z)^{-1} + \gamma(z)(B - M(z))^{-1}\gamma(\overline{z})^*;$$
 (36)

and for each $g \in \mathfrak{H}$ vector-function $f = (A_B - z)^{-1}g$ is a solution of the boundary value problem

$$(A^* - z)f = g, \quad \Gamma_1 f = B\Gamma_0 f, \quad z \in \rho(\widetilde{A}_B).$$
 (37)

Let $\mathfrak{S}(\mathfrak{H})$ be a two-sided ideal in the algebra $\mathcal{B}(\mathfrak{H})$.

Theorem 5 (On resolvent comparability)

Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be the boundary triplet for the operator A^* , $\Theta_1, \Theta_2 \in \widetilde{\mathcal{C}}(\mathcal{H}), z \in \rho(A_{\Theta_1}) \cap \rho(A_{\Theta_2}) \cap \rho(A_0)$. Then for every symmetric normed ideal \mathfrak{S} in $\mathcal{C}(\mathcal{H})$ and for each $\zeta \in \rho(\Theta_1) \cap \rho(\Theta_2)$ the following equivalence is valid:

$$(A_{\Theta_1} - z)^{-1} - (A_{\Theta_2} - z)^{-1} \in \mathfrak{S}(\mathfrak{H}) \iff (\Theta_1 - \zeta)^{-1} - (\Theta_2 - \zeta)^{-1} \in \mathfrak{S}(\mathcal{H}).$$
 (38)

Emphasize, that all objects in formula (35) are expressed by means of boundary mappings Γ_0 and Γ_1 , and alongside (34) it gives the second parameterization of the set Ext_A . This fact makes formula (35) a power tool in the theory and applications of the boundary triplets' technique to different analytical problems, in particular, to boundary value problems.

- Gorbachuk M.L. and Gorbachuk V.I., Boundary Value Problems for Operator Differential Equations, Kluver Academic Publishers, Dordrecht, 1991.
- V.A. Derkach and M.M. Malamud, "Generalized resolvents and the boundary value problems for Hermitian operators with gaps", J. Funct. Anal., 95 (1991), 1–95.
- V.A. Derkach and M.M. Malamud, "The extension theory of Hermitian operators and the moment problem J. Math. Sciences, 73 (1995), 141–242.

Thank you for your attention!