The role of the Weyl function in Krein's theory of semibounded extensions of non-negative operators.

Mark Malamud

Institute of Appl. Math. and Mech.

2.1 The quadratic forms

Theorem 1. (The first representation theorem)

Let \mathfrak{t} be a closed densely defined lower semibounded quadratic form in \mathfrak{H} ($\mathfrak{t} \geqslant \gamma$). Then there exists an operator $T = T^* \geqslant \gamma$, such that:

(i) dom $T \subset \text{dom } \mathfrak{t}$ and

$$\mathfrak{t}[u,v] = (Tu,v), \ u \in \mathrm{dom} \ T, \quad v \in \mathrm{dom} \ \mathfrak{t}; \tag{1}$$

- (ii) dom T is a core of the form \mathfrak{t} ;
- (iii) If $u \in \text{dom } \mathfrak{t}$, $w \in \mathfrak{H}$ and

$$\mathfrak{t}[u,v] = (w,v) \tag{2}$$

is valid for all v belonging to the core of the form \mathfrak{t} , then $u \in \text{dom } T$ and Tu = w.

Definition 2

Let A be a non-negative symmetric operator in \mathfrak{H} . Let us equip the domain $\operatorname{dom} A$ with the norm

$$||f||_A^2 = ||f||^2 + (Af, f).$$
 (3)

and denote by D[A] the Hilbert space obtained after completion. This space is called the energy space of the operator A. Since the form given by (3) is closable (Firedrichs' lemma), the space D[A] is (continuously) embedded in \mathfrak{H} .

Definition 3

A self-adjoint oper-r associated with the closure \mathfrak{a} of the form \mathfrak{a}' ,

$$\mathfrak{a}'[u] = (Au, u), \quad u \in \text{dom } A, \tag{4}$$

is called the Friedrichs extension of the operator A and is denoted by \widehat{A}_F . It follows that the lower bounds of A and \widehat{A}_F coincide. It is known that dom $\mathfrak{a} = \operatorname{dom}(\widehat{A}_F)^{1/2}$

Definition 2

Let A be a non-negative symmetric operator in \mathfrak{H} . Let us equip the domain $\operatorname{dom} A$ with the norm

$$||f||_{A}^{2} = ||f||^{2} + (Af, f).$$
(3)

and denote by D[A] the Hilbert space obtained after completion. This space is called the energy space of the operator A. Since the form given by (3) is closable (Firedrichs' lemma), the space D[A] is (continuously) embedded in \mathfrak{H} .

Definition 3

A self-adjoint oper-r associated with the closure \mathfrak{a} of the form \mathfrak{a}' ,

$$a'[u] = (Au, u), \quad u \in \text{dom } A,$$
 (4)

is called the Friedrichs extension of the operator A and is denoted by \widehat{A}_F . It follows that the lower bounds of A and \widehat{A}_F coincide. It is known that dom $\mathfrak{a} = \operatorname{dom}(\widehat{A}_F)^{1/2}$

Theorem 4 (Krein M.G.)

Let A be a closed semibounded symmetric operator in \mathfrak{H} . Then:

- (i) $D[A] = D[\widehat{A}_F];$
- (ii) dom $\widehat{A}_F = \text{dom } A^* \cap D[A];$
- (iii) If $\widetilde{A} \in \mathsf{Ext}_A(0,\infty)$ and $\widetilde{\mathfrak{a}}$ is the form, associated with the operator \widetilde{A} , then $\mathfrak{a} \subseteq \widetilde{\mathfrak{a}}$ and, in particular, $D[\widehat{A}_F] \subset D[\widetilde{A}]$;
- (iv) If $\widetilde{A} \in \operatorname{Ext}_{A}(0, \infty)$ and dom $\widetilde{A} \subset D[A]$, then $\widetilde{A} = \widehat{A}_{F}$.

2.2 Comparison of semibounded forms

Definition 5

(i) $\mathfrak{a}_1 \geqslant \mathfrak{a}_2$ if

Let \mathfrak{a}_1 and \mathfrak{a}_2 be closed semibounded forms and let A_1 , A_2 be the selfadjoint oper-s associated with \mathfrak{a}_1 and \mathfrak{a}_2 , resp.. Then:

$$\operatorname{dom} \mathfrak{a}_1 \subseteq \operatorname{dom} \mathfrak{a}_2$$
 and $\mathfrak{a}_1[u] \geqslant \mathfrak{a}_2[u]$, $u \in \operatorname{dom} \mathfrak{a}_1$;

(ii) $A_1 \geq A_2$, if $\mathfrak{a}_1 \geqslant \mathfrak{a}_2$.

Theorem 6 (Krein M.G.)

The set $\operatorname{Ext}_A(0,\infty)$ of all nonnegative self-adjoint ext-s of A, contains the maximal \widehat{A}_F and minimal \widehat{A}_K extensions, i.e.

$$\widehat{A}_{K} \leq \widetilde{A} \leq \widehat{A}_{F}, \quad \widetilde{A} \in \operatorname{Ext}_{A}(0, \infty) \quad \Longleftrightarrow \quad (5)$$

$$(\widehat{A}_F + x)^{-1} \leq (\widetilde{A} + x)^{-1} \leq (\widehat{A}_K + x)^{-1}, \quad x \in (0, \infty), \ \widetilde{A} \in \mathsf{Ext}_A(0, \infty)$$

2.2 Comparison of semibounded forms

Definition 5

(i) $\mathfrak{a}_1 \geqslant \mathfrak{a}_2$ if

Let \mathfrak{a}_1 and \mathfrak{a}_2 be closed semibounded forms and let A_1 , A_2 be the selfadjoint oper-s associated with \mathfrak{a}_1 and \mathfrak{a}_2 , resp.. Then:

$$\operatorname{dom} \mathfrak{a}_1 \subseteq \operatorname{dom} \mathfrak{a}_2 \quad \text{and} \quad \mathfrak{a}_1[u] \geqslant \mathfrak{a}_2[u], \quad u \in \operatorname{dom} \mathfrak{a}_1;$$

(ii)
$$A_1 \geq A_2$$
, if $\mathfrak{a}_1 \geqslant \mathfrak{a}_2$.

Theorem 6 (Krein M.G.)

The set $\mathsf{Ext}_A(0,\infty)$ of all nonnegative self-adjoint ext-s of A, contains the maximal \widehat{A}_F and minimal \widehat{A}_K extensions, i.e.

$$\widehat{A}_{K} \leq \widetilde{A} \leq \widehat{A}_{F}, \quad \widetilde{A} \in \operatorname{Ext}_{A}(0, \infty) \quad \Longleftrightarrow \quad (5)$$

$$(\widehat{A}_F+x)^{-1} \leq (\widetilde{A}+x)^{-1} \leq (\widehat{A}_K+x)^{-1}, \quad x \in (0,\infty), \ \widetilde{A} \in \mathsf{Ext}_A(0,\infty)$$

The operator \widehat{A}_F coincides with the Friedrichs extension. The extension \widehat{A}_K is called the Krein extension.

2.3 The theory of extensions of nonnegative operators

Theorem 7

Let A be a densely defined nonnegative symmetric operator in \mathfrak{H} and let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* such that $A_0 (= A^* \upharpoonright \ker \Gamma_0) \geq 0$. Let also $M(\cdot)$ be the corresponding Weyl function. Then $A_0 = \widehat{A}_K$ $(A_0 = \widehat{A}_F)$ if and only if

$$\lim_{x \uparrow 0} (M(x)f, f) = +\infty, \quad f \in \mathcal{H} \setminus \{0\}$$
$$(\lim_{x \downarrow -\infty} (M(x)f, f) = -\infty, \quad f \in \mathcal{H} \setminus \{0\}).$$

Theorem 8, [3]

Let A be a densely defined nonnegative symmetric operator in \mathfrak{H} and let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* such that $A_0(=A^* \upharpoonright \ker \Gamma_0) \geq 0$. Let also $M(\cdot)$ be the corresponding Weyl function. Then:

(i) There exist strong resolvent limits

$$M(0) := s - R - \lim_{x \uparrow 0} M(x), \qquad M(-\infty) := s - R - \lim_{x \downarrow -\infty} M(x).$$
 (6)

(ii) M(0) and $M(-\infty)$ are self-adjoint linear relations in \mathcal{H} associated with the semibounded below (above) quadratic forms

$$t_0[f] = \lim_{x \uparrow 0} (M(x)f, f) \ge \beta ||f||^2, \quad t_{-\infty}[f] = \lim_{x \downarrow -\infty} (M(x)f, f) \le \alpha ||f||^2,$$

$$\mathrm{dom}\,(t_0) = \big\{ f \in \mathcal{H} : \lim_{x \uparrow 0} |(M(x)f, f)| < \infty \big\} = \mathrm{dom}\,((M(0)_{\mathrm{op}} - \beta)^{1/2}),$$

$$\operatorname{dom}(\mathfrak{t}_{-\infty}) = \left\{ f \in \mathcal{H} : \lim_{\substack{x \mid -\infty}} |(M(x)f, f)| < \infty \right\} = \operatorname{dom}((\alpha - M(-\infty)_{\operatorname{op}})^{1/2}).$$

Theorem 8, [3]

Moreover,

$$dom(A_K) = \{ f \in dom(A^*) : \{ \Gamma_0 f, \Gamma_1 f \} \in M(0) \}, dom(A_F) = \{ f \in dom(A^*) : \{ \Gamma_0 f, \Gamma_1 f \} \in M(-\infty) \}.$$

(iii) Extensions A_0 and A_K are disjoint (A_0 and A_F are disjoint) if and only if

$$M(0) \in \mathcal{C}(\mathcal{H})$$
 $(M(-\infty) \in \mathcal{C}(\mathcal{H}), \text{ respectively}).$

Moreover, in this case

$$dom(A_K) = dom(A^*) \upharpoonright ker(\Gamma_1 - M(0)\Gamma_0)$$

$$(dom(A_F) = dom(A^*) \upharpoonright ker(\Gamma_1 - M(-\infty)\Gamma_0), \text{ respectively}).$$

Theorem 9

Let A be a closed densely defined nonnegative symmetric operator in \mathfrak{H} , $A \geq m_A I \geq 0$, and let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* such that $A_0 = \widehat{A}_F$. Let also Θ is semibounded self-adjoint linear relations in \mathcal{H} and a < 0. Then:

- (i) $A_{\Theta} \geq a$, $\iff \Theta M(a) \geq 0$;
- (ii) $A_{\Theta} \geq 0 \iff \mathfrak{t}_{\Theta} \mathfrak{t}_{M(0)} \geq 0$. In particular, $\operatorname{dom} \mathfrak{t}_{\Theta} \subset \operatorname{dom} \mathfrak{t}_{M(0)}$.
- (iii) The total multiplicities of the negative spectra of A_{Θ} and $\Theta M(0)$ coincide:

$$\kappa_{-}(A_{\Theta}) := \dim \operatorname{ran} \left(\mathcal{E}_{A_{\Theta}}(\mathbb{R}_{-}) \right) = \kappa_{-}(\mathfrak{t}_{\Theta} - \mathfrak{t}_{M(0)}). \tag{7}$$

(iv) If $m_A > 0$, then A_{Θ} is positive definite if and only if Θ is; (v) For any $p \in (0, \infty]$, the following equivalence holds:

$$E_{\Theta-M(a)}(\mathbb{R}_-)(\Theta-M(a))\in\mathfrak{S}_p\iff E_{A_\Theta}(-\infty,a)A_\Theta\in\mathfrak{S}_p.$$

For a = 0 the equivalence is replaced by the implication \Longrightarrow .

Theorem 9

(vi) For every $\gamma \in (0, \infty)$ the following equivalence holds

$$\lambda_j(A_{\Theta}) = j^{-\gamma}(a + o(1)) \iff \lambda_j(\Theta(0)) = j^{-\gamma}(b + o(1))$$

as $j \to \infty$. Moreover, either $ab \neq 0$ or a = b = 0.

Here \mathfrak{t}_{Θ} and $\mathfrak{t}_{M(0)}$ denote the closed quadratic forms associated with the relations Θ and M(0), respectively, in accordance with the first representation theorem.

Corollary 10

Assume the conditions of Theorem 9. If $dom \Theta \subset dom(M(0))$, in particular, if $M(0) \in \mathcal{B}(\mathcal{H})$, then the equivalence holds

$$A_{\Theta} \geq 0 \Longleftrightarrow \Theta - M(0) \geq 0.$$

Matrix Sturm-Liouville operator

Let $A:=A_{min}$ — be the minimal operator, generated in $L^2(\mathbb{R}_+,\mathbb{C}^m)$ by the differential expression $\mathcal{A}:=-\frac{d^2}{dx^2}+Q(x),\quad Q=Q^*\in L^2(\mathbb{R}_+,\mathbb{C}^{m\times m}).$ Then $A_{max}=A^*$. Moreover,

$$\operatorname{dom}(A_{\min}) = H_0^2(\mathbb{R}_+, \mathbb{C}^m), \quad \operatorname{dom}(A_{\max}) = H^2(\mathbb{R}_+, \mathbb{C}^m). \quad (8)$$

The closure \mathfrak{t}_{A_B} of the quadratic form \mathfrak{t}'_{A_B} is given by

$$\mathfrak{t}_{A_B}[f] = \int_0^\infty (|f'(x)| + Q(x)|f(x)|)^2 dx + B|f(0)|^2, \quad \text{dom } \mathfrak{t}_A = H_0^1(\mathbb{R}_+, \mathbb{C}^m),$$
(9)

where $\operatorname{dom} A_B = \{ f \in \operatorname{dom} A^* : f'(0) = Bf(0) \}. \ \mathfrak{t'}_{A_B} \text{ is given by }$

$$\mathfrak{t}_{\widehat{A}_{K}}[f] = \int_{0}^{\infty} (|f'(x)| + Q(x)|f(x)|)^{2} dx + M(0)|f(0)|^{2}.$$
 (10)

If
$$Q=0$$
, then $\kappa_-(A_{A_B})=\kappa_-(B-M(0))=\kappa_-(B)$

2.4 Direct sums of boundary triplets (see [5], [6], [7])

Let S_n be a densely defined symmetric operator in a Hilbert space \mathfrak{H}_n with $\mathfrak{n}_+(S_n)=\mathfrak{n}_-(S_n)\leq\infty,\ n\in\mathbb{N}$. Consider the operator $A:=\bigoplus_{n=1}^\infty S_n$ acting in $\mathfrak{H}:=\bigoplus_{n=1}^\infty \mathfrak{H}_n$. Clearly, $A^*=\bigoplus_{n=1}^\infty S_n^*$. Let $\mathcal{H}:=\bigoplus_{n=1}^\infty \mathcal{H}_n$ be a Hilbert direct sum of \mathcal{H}_n . Define mappings Γ_0 and Γ_1 by setting $\Gamma_j:=\bigoplus_{n=1}^\infty \Gamma_j^{(n)}$. We assume that the operator $A=\bigoplus_{n=1}^\infty S_n$ has a regular real

$$(a-\varepsilon, a+\varepsilon) \subset \bigcap_{n=1}^{\infty} \widehat{\rho}(S_n).$$
 (11)

point, i.e., there exists an $\varepsilon > 0$ such that

Theorem 11

Let $\{S_n\}_{n=1}^{\infty}$ be a sequence of symmetric operators satisfying (11). Let also $\Pi_n = \{\mathcal{H}_n, \Gamma_0^{(n)}, \Gamma_1^{(n)}\}$ be a boundary triplet for S_n^* such that $(a - \varepsilon, a + \varepsilon) \subset \rho(S_{n0})$, and let $M_n(\cdot)$ be the corresponding Weyl function. Then:

(i) $\Pi = \bigoplus_{n=1}^{\infty} \Pi_n$ forms a **B**-generalized boundary triplet for $A^* = \bigoplus_{n=1}^{\infty} S_n^*$ if and only if

$$C_3 := \sup_{n \in \mathbb{N}} \|M_n(a)\|_{\mathcal{H}_n} < \infty \quad \text{and} \quad C_4 := \sup_{n \in \mathbb{N}} \|M'_n(a)\|_{\mathcal{H}_n} < \infty,$$

$$(12)$$

where $M'_n(a) := (dM_n(z)/dz)|_{z=a}$.

(ii) $\Pi = \bigoplus_{n=1}^{\infty} \Pi_n$ is an ordinary boundary triplet for $A^* = \bigoplus_{n=1}^{\infty} S_n^*$ if and only if, in addition to (12), the following condition is satisfied:

$$C_5 := \sup_{n \in \mathbb{N}} \| (M'_n(a))^{-1} \|_{\mathcal{H}_n} < \infty.$$
 (13)

Corollary 11

Let $\{S_n\}_{n=1}^{\infty}$ be a sequence of sym. operators satisfying (11). Let also $\widetilde{\Pi}_n = \{\mathcal{H}_n, \widetilde{\Gamma}_0^{(n)}, \widetilde{\Gamma}_1^{(n)}\}$ be a boundary triplet for S_n^* such that $(a-\varepsilon, a+\varepsilon) \subset \rho(S_{n0}), \ S_{n0} = S_n^* \upharpoonright \ker(\widetilde{\Gamma}_0^{(n)}), \ \text{and} \ \widetilde{M}_n(\cdot)$ the corresp. Weyl function. Assume also that for some operators R_n such that $R_n, R_n^{-1} \in [\mathcal{H}_n]$, the following conditions are satisfied:

$$\sup_{n} \|R_{n}^{-1}(\widetilde{M}'_{n}(a))(R_{n}^{-1})^{*}\|_{\mathcal{H}_{n}} < \infty \quad \text{and}$$

$$\sup_{n} \|R_{n}^{*}(\widetilde{M}'_{n}(a))^{-1}R_{n}\|_{\mathcal{H}_{n}} < \infty, \quad n \in \mathbb{N}.$$
 (14)

Then the direct sum $\Pi = \bigoplus_{n=1}^{\infty} \Pi_n$ of boundary triplets

$$\Pi_{n} = \{\mathcal{H}_{n}, \Gamma_{0}^{(n)}, \Gamma_{1}^{(n)}\} \quad \text{with} \quad \Gamma_{0}^{(n)} := R_{n} \widetilde{\Gamma}_{0}^{(n)},
\Gamma_{1}^{(n)} := (R_{n}^{-1})^{*} (\widetilde{\Gamma}_{1}^{(n)} - \widetilde{M}_{n}(a) \widetilde{\Gamma}_{0}^{(n)}),$$
(15)

forms a boundary triplet for $A^* = \bigoplus_{n=1}^{\infty} S_n^*$.

- M. G. Kreĭn, "The theory of selfadjoint extensions of semibounded Hermitian operators and its applications, I Mat. Sb., 20 (1947), 431–495.
- [2] T. Kato, Perturbation theory for linear operators, Springer Verlag, Berlin, 1966.
- [3] V.A. Derkach and M.M. Malamud, "Generalized resolvents and the boundary value problems for Hermitian operators with gaps", J. Funct. Anal., 95 (1991), 1–95.
- [4] M.M. Malamud, "Certain classes of extensions of a lacunary Hermitian operator Ukrainian Math. Journ., 44 No. 2 (1992), 190–204.
- [5] M. M. Malamud and H. Neidhardt, Sturm-Liouville boundary value problems with operator potentials and unitary equivalence, J. Differential Equations 252, 5875–5922 (2012).

- [6] A. Kostenko and M. Malamud, 1–D Schrödinger operators with local point interactions on a discrete set, J. Differential Equations 249, 253–304 (2010).
- [7] R. Carlone, M. Malamud, and A. Posilicano, On the spectral theory of Gesztezy–Šeba realizations of 1-D Dirac operators with point interactions on discrete set, J. Differential Equations 254, 3835–3902 (2013).

Thank you!